

6CX200Nd/N

COAXIAL TRANSDUCER

KEY FEATURES

- High power handling: 400 / 80 W program power
- High sensitivity: 92 / 103 dB (1W / 1m) (LF / HF)
- 2" / 1,75" voice coil (LF/HF)
- Common neodymium magnet system design
- Weatherproof paper cone with Santoprene[™] surround
- CONEX spider

- Shorting cap for extended response
- Extended controlled displacement: X_{max} ± 5,5 mm
- 26 mm peak-to-peak excursion before damage
- Excellent off-axis response
- 70° coverage horn for HF dispersion control

TECHNICAL SPECIFICATIONS

Nominal diameter	165 mm 6,5 in		
Rated impedance (LF/HF)			8/8Ω
Minimum impedance (LF/HF)		5	5,4 / 5,0 Ω
Power capacity 1 (LF/HF)		200 /	40 W _{AES}
Program power ² (LF/HF)		4	00 / 80 W
Sensitivity (LF/HF ³)	92 dB	1W /	1m @ Z _N
	103 dB	1W /	1m @ Z _N
Frequency range		65 - 2	20.000 Hz
Recom. HF crossover	2,5 kHz or higher (12 dB/oct min slope)		
Voice coil diameter (LF/HF)	50,8	mm	2 in
	44,4	mm	1,75 in
BI factor			10,5 N/A
Moving mass			0,016 kg
Voice coil length			14 mm
Air gap height			7 mm
X _{damage} (peak to peak)			26 mm

THIELE-SMALL PARAMETERS 4

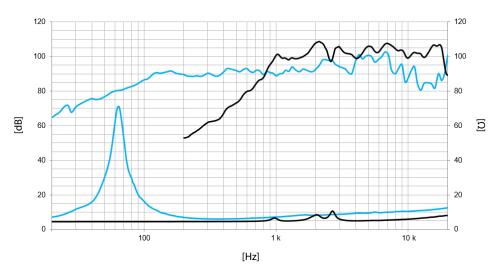
Resonant frequency, f _s	65 Hz
D.C. Voice coil resistance, R _e	5,0 Ω
Mechanical Quality Factor, Q _{ms}	3,9
Electrical Quality Factor, Q _{es}	0,29
Total Quality Factor, Qts	0,27
Equivalent Air Volume to C _{ms} , V _{as}	9,4 I
Mechanical Compliance, C _{ms}	366 μ m / N
Mechanical Resistance, R _{ms}	1,7 kg / s
Efficiency, η ₀	0,9 %
Effective Surface Area, S _d	0,0135 m ²
Maximum Displacement, X _{max} ⁵	5,5 mm
Displacement Volume, V _d	69 cm ³
Voice Coil Inductance, L _e	0,24 mH

Notes

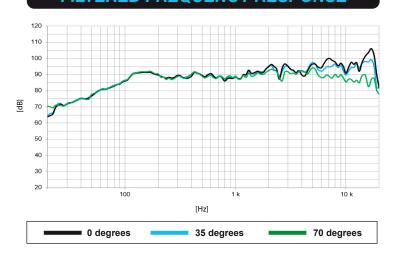
¹ The power capaticty is determined according to AES2-1984 (r2003) standard.

² Program power is defined as power capacity + 3 dB.

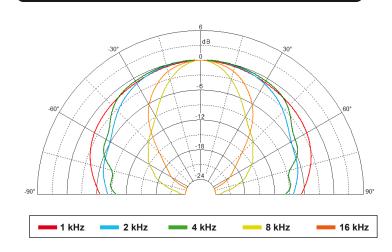
³ Sensitivity was measured at 1m distance, on axis, with 1W input, averaged in the range 1 - 7 kHz


⁴ T-S parameters are measured after an exercise period using a preconditioning power test. The measurements are carried out with a velocity-current laser transducer and will reflect the long term parameters (once the loudspeaker has been working for a short period of time).

 $^{^{6}}$ The X_{max} is calculated as (L_{vc} - H_{ag})/2 + (H_{ag}/3,5), where L_{vc} is the voice coil length and H_{ag} is the air gap height.

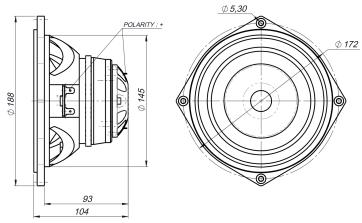

6CX200Nd/N

COAXIAL TRANSDUCER


Note: Frequency response measured with loudspeaker standing on infinite baffle in anechoic chamber, 1W @ 1m

FILTERED FREQUENCY RESPONSE

Note: Filtered frequency response measured with loudspeaker standing on infinite baffle in anechoic chamber, 1W @ 1m using filter FD-2CX


POLAR PATTERN

MOUNTING INFORMATION

Overall diameter	188 mm	7,4 in
Bolt circle diameter	172 mm	6,8 in
Baffle cutout diameter:		
- Front mount	145 mm	5,7 in
Depth	104 mm	4,1 in
Volume displaced by driver	0,55 I	0,02 ft ³
Net weight	2,0 kg	4,4 lb
Shipping weight	2,2 kg	4,9 lb

DIMENSION DRAWING

